1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! Parses slide programs into the slide [`grammar`](crate::grammar) IR and produces semantic
//! diagnostics.

#[macro_use]
pub mod test_utils; // this **must** be first since macro import order matters!

#[macro_use]
mod errors;
pub use errors::ParseErrors;
use errors::*;

mod expression_pattern_parser;
mod statement_parser;

pub use expression_pattern_parser::parse as parse_expression_pattern;
pub use statement_parser::parse as parse_statements;

use crate::common::Span;
use crate::diagnostics::{Diagnostic, DiagnosticRecord};
use crate::grammar::*;
use crate::scanner::types::{Token, TokenType as TT};
use crate::utils::PeekIter;

use core::convert::TryFrom;

/// Describes the result of parsing a slide program.
pub struct ParseResult<T> {
    /// The slide program.
    pub program: T,
    /// Parsing diagnostics encountered while scanning the program.
    pub diagnostics: Vec<Diagnostic>,
}

macro_rules! binary_expr_parser {
    ($self:ident $($name:ident: lhs=$lhs_term:ident, rhs=$rhs_term:ident, op=[$($matching_op:tt)+])*) => {
        $(
        fn $name(&mut $self) -> Self::Expr {
            use BinaryOperator::*;

            let mut lhs = $self.$lhs_term();
            while let Ok(op) = BinaryOperator::try_from($self.peek())
            {
                match op {
                    $($matching_op)+ => {
                        $self.next();
                        let rhs = $self.$rhs_term();
                        let span = lhs.span().to(rhs.span());
                        lhs = Self::Expr::binary(
                            BinaryExpr { op, lhs, rhs, },
                            span,
                        );
                    }
                    _ => break,
                }
            }
            lhs
        }
        )*
    };
}

/// Returns a diagnostic for an unclosed delimiter.
fn unclosed_delimiter(opener: Token, expected_closer: TT, found_closer: Token) -> Diagnostic {
    let mut found_str = found_closer.to_string();
    if !matches!(found_closer.ty, TT::EOF) {
        found_str = format!("`{}`", found_str);
    }
    MismatchedClosingDelimiter!(expected expected_closer, at found_closer.span,
                                due to opener, at opener.span;
                                found found_str)
}

trait Parser<T>
where
    T: Grammar,
    Self::Expr: RcExpression,
{
    type Expr;

    // fn new(input: Vec<Token>) -> Self;
    fn input(&mut self) -> &mut PeekIter<Token>;
    fn parse(&mut self) -> T;
    fn parse_float(&mut self, f: f64, span: Span) -> Self::Expr;
    fn parse_variable(&mut self, name: String, span: Span) -> Self::Expr;
    fn parse_var_pattern(&mut self, name: String, span: Span) -> Self::Expr;
    fn parse_const_pattern(&mut self, name: String, span: Span) -> Self::Expr;
    fn parse_any_pattern(&mut self, name: String, span: Span) -> Self::Expr;
    fn parse_open_paren(&mut self, open: Token) -> Self::Expr {
        let inner = self.expr();
        let closing_tok = self.next();
        let sp = open.span.to(closing_tok.span);
        if !matches!(closing_tok.ty, TT::CloseParen) {
            self.push_diag(unclosed_delimiter(open, TT::CloseParen, closing_tok));
        }
        Self::Expr::paren(inner, sp)
    }
    fn parse_open_bracket(&mut self, open: Token) -> Self::Expr {
        let inner = self.expr();
        let closing_tok = self.next();
        let sp = open.span.to(closing_tok.span);
        if !matches!(closing_tok.ty, TT::CloseBracket) {
            self.push_diag(unclosed_delimiter(open, TT::CloseBracket, closing_tok));
        }
        Self::Expr::bracket(inner, sp)
    }
    fn push_diag(&mut self, diagnostic: Diagnostic);

    fn has_stmt_break(&mut self) -> bool;

    #[inline]
    fn done(&mut self) -> bool {
        self.input().peek().map(|t| &t.ty) == Some(&TT::EOF)
    }

    #[inline]
    fn expr(&mut self) -> Self::Expr {
        self.add_sub_term()
    }

    #[inline]
    fn peek(&mut self) -> &Token {
        self.input().peek().unwrap()
    }

    #[inline]
    fn next(&mut self) -> Token {
        if self.done() {
            self.peek().clone()
        } else {
            self.input().next().unwrap()
        }
    }

    binary_expr_parser!(
        self

        // Level 1: +, -
        add_sub_term:        lhs = mul_divide_mod_term, rhs = mul_divide_mod_term, op = [Plus | Minus]

        // Level 2: *, /, %
        mul_divide_mod_term: lhs = exp_term,            rhs = exp_term,            op = [Mult | Div | Mod]

        // Level 3: ^                                   right-associativity of ^
        exp_term:            lhs = num_term,            rhs = exp_term,            op = [Exp]
    );

    fn num_term(&mut self) -> Self::Expr {
        let tok = self.next();
        let tok_span = tok.span;
        if matches!(tok.ty, TT::EOF) {
            self.push_diag(ExpectedExpr!(tok.span, "end of file"));
            return Self::Expr::empty(tok.span);
        }

        let node = if let Ok(op) = UnaryOperator::try_from(&tok) {
            let rhs = self.exp_term();
            let span = tok.span.to(rhs.span());
            Self::Expr::unary(UnaryExpr { op, rhs }, span)
        } else {
            match tok.ty {
                TT::Float(f) => self.parse_float(f, tok.span),
                TT::Variable(name) => self.parse_variable(name, tok.span),
                TT::VariablePattern(name) => self.parse_var_pattern(name, tok.span),
                TT::ConstPattern(name) => self.parse_const_pattern(name, tok.span),
                TT::AnyPattern(name) => self.parse_any_pattern(name, tok.span),
                TT::OpenParen => self.parse_open_paren(tok),
                TT::OpenBracket => self.parse_open_bracket(tok),
                _ => {
                    self.push_diag(if matches!(tok.ty, TT::CloseParen | TT::CloseBracket) {
                        UnmatchedClosingDelimiter!(tok.span, tok.ty)
                    } else {
                        ExpectedExpr!(tok.span, tok.to_string())
                    });
                    Self::Expr::empty(tok.span)
                }
            }
        };

        let insert_synthetic_mult = match self.peek().ty {
            // <node>(<other>) => <node> * (<other>)
            TT::OpenParen | TT::OpenBracket => true,
            // <num><var> => <num> * <var>
            TT::Variable(_) | TT::VariablePattern(_) | TT::ConstPattern(_) | TT::AnyPattern(_)
                if node.is_const() =>
            {
                true
            }
            _ => false,
        } && !self.has_stmt_break();
        if insert_synthetic_mult {
            let next_span = self.peek().span;
            let bw_cur_and_next = (tok_span.hi, next_span.lo);
            self.input()
                .push_front(Token::new(TT::Mult, bw_cur_and_next, bw_cur_and_next));
        }

        node
    }

    /// Creates diagnostics for extra tokens following a primary item.
    /// All remaining tokens will be consumed in the construction of the diagnostic.
    ///
    /// `additional_diags` applies additional diagnostic messages to the extra tokens diagnostic,
    /// if one is produced.
    fn extra_tokens_diag(&mut self, additional_diags: impl Fn(Diagnostic, Span) -> Diagnostic) {
        while matches!(self.peek().ty, TT::CloseParen | TT::CloseBracket) {
            let tok = self.next();
            self.push_diag(UnmatchedClosingDelimiter!(tok.span, tok.ty));
        }

        if self.done() {
            return;
        }

        let first_tok_span = self.peek().span;
        let Span { lo, mut hi } = first_tok_span;
        while self.peek().ty != TT::EOF {
            hi = self.next().span.hi;
        }
        let diag = additional_diags(ExtraTokens!(lo..hi), first_tok_span);
        self.push_diag(diag);
    }
}

#[cfg(test)]
mod tests {
    common_parser_tests! {
        addition:                               "2 + 2"
        addition_nested:                        "1 + 2 + 3"
        addition_sub_nested:                    "1 + 2 - 3"
        subtraction:                            "2 - 2"
        subtraction_nested:                     "1 - 2 - 3"
        subtraction_add_nested:                 "1 - 2 + 3"
        multiplication:                         "2 * 2"
        multiplication_nested:                  "1 * 2 * 3"
        division:                               "2 / 2"
        division_nested:                        "1 / 2 / 3"
        modulo:                                 "2 % 5"
        modulo_nested:                          "1 % 2 % 3"
        exponent:                               "2 ^ 3"
        exponent_nested:                        "1 ^ 2 ^ 3"
        precedence_plus_times:                  "1 + 2 * 3"
        precedence_times_plus:                  "1 * 2 + 3"
        precedence_plus_div:                    "1 + 2 / 3"
        precedence_div_plus:                    "1 / 2 + 3"
        precedence_plus_mod:                    "1 + 2 % 3"
        precedence_mod_plus:                    "1 % 2 + 3"
        precedence_minus_times:                 "1 - 2 * 3"
        precedence_times_minus:                 "1 * 2 - 3"
        precedence_minus_div:                   "1 - 2 / 3"
        precedence_div_minus:                   "1 / 2 - 3"
        precedence_minus_mod:                   "1 - 2 % 3"
        precedence_mod_minus:                   "1 % 2 - 3"
        precedence_expo_plus:                   "1 + 2 ^ 3"
        precedence_plus_exp:                    "1 ^ 2 + 3"
        precedence_expo_times:                  "1 * 2 ^ 3"
        precedence_time_expo:                   "1 ^ 2 * 3"
        parentheses_plus_times:                 "(1 + 2) * 3"
        parentheses_time_plus:                  "3 * (1 + 2)"
        parentheses_time_mod:                   "3 * (2 % 2)"
        parentheses_mod_time:                   "(2 % 2) * 3"
        parentheses_exp_time:                   "2 ^ (3 ^ 4 * 5)"
        parentheses_unary:                      "-(2 + +-5)"
        nested_parentheses:                     "((1 * (2 + 3)) ^ 4)"
        brackets_plus_times:                    "[1 + 2] * 3"
        brackets_time_plus:                     "3 * [1 + 2]"
        brackets_time_mod:                      "3 * [2 % 2]"
        brackets_mod_time:                      "[2 % 2] * 3"
        brackets_exp_time:                      "2 ^ [3 ^ 4 * 5]"
        brackets_unary:                         "-[2 + +-5]"
        nested_brackets:                        "[[1 * [2 + 3]] ^ 4]"
        unary_minus:                            "-2"
        unary_quad:                             "+-+-2"
        implicit_mult_num_var:                  "2x => 2 * x"
        implicit_mult_num_var_pat:              "2$x => 2 * $x"
        implicit_mult_num_const_pat:            "2#x => 2 * #x"
        implicit_mult_num_any_pat:              "2_x => 2 * _x"
        implicit_mult_num_paren:                "2(1) => 2 * (1)"
        implicit_mult_num_bracket:              "2[1] => 2 * [1]"
        implicit_mult_var_paren:                "x(1) => x * (1)"
        implicit_mult_var_bracket:              "x[1] => x * [1]"
        implicit_mult_var_pat_paren:            "$x(1) => $x * (1)"
        implicit_mult_var_pat_bracket:          "$x[1] => $x * [1]"
        implicit_mult_const_pat_paren:          "$x(1) => $x * (1)"
        implicit_mult_const_pat_bracket:        "$x[1] => $x * [1]"
        implicit_mult_any_pat_paren:            "_x(1) => _x * (1)"
        implicit_mult_any_pat_bracket:          "_x[1] => _x * [1]"
        implicit_mult_paren_paren:              "(1)(2) => (1) * (2)"
        implicit_mult_paren_bracket:            "(1)[2] => (1) * [2]"
        implicit_mult_bracket_paren:            "[1](2) => [1] * (2)"
        implicit_mult_bracket_bracket:          "[1][2] => [1] * [2]"
        implicit_mult_unary_paren:              "-1(2) => -1 * (2)"
        implicit_mult_unary_bracket:            "-1[2] => -1 * [2]"
        implicit_mult_unary_nested_var:         "-2x => -2 * x"
        implicit_mult_exp:                      "2x^5 => 2 * x ^ 5"
    }
}