1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
//! This module tries to flatten expressions as far as possible without the intervention of more
//! complex evaluation rules. Flattening might be used as a "first pass" to normalize an expression,
//! or by a more complex rule for the same reason.
//!
//! # Examples
//!
//! ## Targets of this module
//!
//! ```text
//! 1 + 2 + 3 -> 6
//! 1 - 5x / x -> -4
//! ```
//!
//! ## Non targets of this module
//!
//! ```text
//! x^2 + 4x + 4 -> (x + 2)^2
//! ```

use crate::grammar::*;
use crate::utils::{unflatten_binary_expr, UnflattenStrategy};

use std::collections::{BTreeMap, VecDeque};

/// Attempts to flatten an expression, folding constant expressions and like terms.
///
/// ## Examples
///
/// ```text
/// 1 + 2 + 3 -> 6
/// 1 - 5x / x -> -4
/// ```
///
/// Expressions flattened to a binary operation have the following conditions:
///
/// - Additions and subtractions become additions
pub fn flatten_expr(expr: RcExpr) -> RcExpr {
    match expr.as_ref() {
        // #a -> #a, $a -> $a
        // We can't do better than this.
        Expr::Const(_) | Expr::Var(_) => expr,

        // (_a) -> _a, [_a] -> _a
        // We can't do better than this.
        Expr::Parend(inner) | Expr::Bracketed(inner) => flatten_expr(inner.clone()),

        // _a + _b -> _c
        // _a - _b -> _c
        Expr::BinaryExpr(BinaryExpr { op, lhs, rhs })
            if op == &BinaryOperator::Plus || op == &BinaryOperator::Minus =>
        {
            flatten_add_or_sub(lhs.clone(), rhs.clone(), op == &BinaryOperator::Minus)
        }

        // _a * _b -> _c
        // _a / _b -> _c
        Expr::BinaryExpr(BinaryExpr { op, lhs, rhs })
            if op == &BinaryOperator::Mult || op == &BinaryOperator::Div =>
        {
            flatten_mul_or_div(lhs.clone(), rhs.clone(), op == &BinaryOperator::Div)
        }

        // TODO: handle everything else better
        Expr::BinaryExpr(BinaryExpr { op, lhs, rhs }) => {
            let lhs = flatten_expr(lhs.clone());
            let rhs = flatten_expr(rhs.clone());
            rc_expr!(
                Expr::BinaryExpr(BinaryExpr { op: *op, lhs, rhs }),
                expr.span
            )
        }

        Expr::UnaryExpr(UnaryExpr { op, rhs }) => {
            let rhs = flatten_expr(rhs.clone());
            rc_expr!(Expr::UnaryExpr(UnaryExpr { op: *op, rhs }), expr.span)
        }
    }
}

/// Flattens an addition or subtraction, folding constants and like terms as far as possible.
/// The flattened expression is always normalized to an addition.
///
/// ```text
/// 1 + 2x - 3 + x -> -2 + 3x
/// ```
fn flatten_add_or_sub(o_lhs: RcExpr, o_rhs: RcExpr, is_subtract: bool) -> RcExpr {
    let o_span = o_lhs.span.to(o_rhs.span);
    let lhs = flatten_expr(o_lhs);
    let rhs = flatten_expr(o_rhs);

    // Leading coefficients to fold constants into.
    let mut coeff = 0.;
    // Terms -> coefficients present in the expression.
    let mut terms = BTreeMap::<RcExpr, f64>::new();

    let mut args = VecDeque::with_capacity(2);
    args.push_back(lhs);
    args.push_back(rhs);

    // If this is not a subtraction, the first two args are both on the add side.
    let mut args_before_sub = if is_subtract { 1 } else { 2 };

    while let Some(arg) = args.pop_front() {
        let sub_side = args_before_sub <= 0;
        args_before_sub -= 1;

        let arg = unwrap_expr(arg.clone());

        match arg.as_ref() {
            Expr::Const(konst) => {
                if sub_side {
                    coeff -= konst;
                } else {
                    coeff += konst;
                }
            }
            // `flatten` will always normalize add/sub expressions to add, so we only have to
            // handle that.
            Expr::BinaryExpr(BinaryExpr { op, lhs, rhs }) if op == &BinaryOperator::Plus => {
                if sub_side {
                    // 1 - (2 + 3) -> 1 - 2 - 3; add both operands to the sub side.
                    args.push_back(lhs.clone());
                    args.push_back(rhs.clone());
                } else {
                    // 1 + (2 + 3) -> 1 + 2 + 3
                    args.push_front(lhs.clone());
                    args.push_front(rhs.clone());
                    args_before_sub += 2;
                }
            }
            _ => {
                // Otherwise the arg is something we cannot further decompose in an add/sub context
                // (e.g. a variable or an exponentiation), so add it as a term.
                // TODO: see if we can handle other things more granularly
                let entry = terms.entry(arg).or_insert(0.);
                if sub_side {
                    *entry -= 1.;
                } else {
                    *entry += 1.;
                }
            }
        }
    }

    let mut new_args: Vec<RcExpr> = Vec::with_capacity(1 + terms.len());
    if coeff != 0. {
        new_args.push(rc_expr!(Expr::Const(coeff), o_span));
    }
    for (term, coeff) in terms {
        if coeff == 0. {
            // The happiest path :)
            continue;
        } else if (coeff - 1.).abs() < std::f64::EPSILON {
            // coeff == 1
            new_args.push(term.clone());
        } else if (coeff - -1.).abs() < std::f64::EPSILON {
            // coeff == -1
            let neg = UnaryExpr::negate(term.clone());
            new_args.push(rc_expr!(Expr::UnaryExpr(neg), o_span));
        } else {
            let mult = BinaryExpr::mult(rc_expr!(Expr::Const(coeff), o_span), term.clone());
            new_args.push(rc_expr!(Expr::BinaryExpr(mult), o_span));
        }
    }

    match new_args.len() {
        0 => rc_expr!(Expr::Const(0.), o_span),
        1 => new_args.remove(0),
        _ => unflatten_binary_expr(&new_args, BinaryOperator::Plus, UnflattenStrategy::Left),
    }
}

/// Flattens a multiplication or division, folding constants and like terms as far as possible.
/// The flattened expression is always normalized to a multiplication.
///
/// ```text
/// 10 * 2x / 5 / 2 / 4x -> x^2/2
/// ```
///
/// # How this is done
///
/// Consider the expression `x*2/y/(5/(x/y)) ~ (/ (/ (* x 2) y) (/ 5 (/ x y)))`. If they can be
/// unrolled to a series of terms `*x, *2, /y, /5, *x, /y`, all we have to do is combine like terms
/// and constants, and we're done. Turns out the trickier, and more interesting part, is exactly how
/// to unfold the expression. (There's a reason our example is mostly division.)
///
/// > Note that the flattening process does *not* play with commutativity; doing so would never
/// > correct.
///
/// First, let's assume we've unfolded all subexpressions. This means that all subexpressions will
/// be in multiplicative form; in particular, the example above becomes
///
/// ```text
/// x*2*(1/y)/(5*(1/(x*(1/y)))) ~ (/ (* (* x 2) (/ 1 y)) (* 5 (/ 1 (* x (/ 1 y)))))
/// ```
///
/// As we unfold subexpressions, we attach their operands to a double-ended list. The left side of
/// the list represents terms that should be multiplied in the final expression, and the right side
/// represents terms that should be divided. Initially this is just the LHS and RHS of the top
/// level expression. We also keep a registry of unfoldable terms and a variable to fold constants
/// into. In our example, this initially looks like
///
/// ```text
///           mul                       div                    registry       const
/// ----------------------||----------------------------
/// | (* (* x 2) (/ 1 y)) || (* 5 (/ 1 (* x (/ 1 y)))) |           ∅            1
/// ----------------------||----------------------------
///                       ^^-- pivot
/// ```
///
/// Now we go down the list and unfold any binary expression we see, or add fully-unfolded terms to
/// the registry.
///
/// We always handle the "multiplication" side first.
///
/// ## Multiplication side
///
/// This part is pretty straightforward. When we see a multiplication, we just add both operand to
/// the front of the list. Unfolding `(* (* x 2) (/ 1 y))`, we get
///
/// ```text
///           mul                       div                  registry       const
/// --------------------||----------------------------
/// | (* x 2) | (/ 1 y) || (* 5 (/ 1 (* x (/ 1 y)))) |           ∅            1
/// --------------------||----------------------------
/// ```
///
/// Which unfolds to
///
/// ```text
///           mul                   div                    registry       const
/// ------------------||----------------------------
/// | x | 2 | (/ 1 y) || (* 5 (/ 1 (* x (/ 1 y)))) |           ∅            1
/// ------------------||----------------------------
/// ```
///
/// In the next two steps see an unfoldable and a constant, which we add to the registry an fold
/// accordingly.
///
/// ```text
///    mul                  div                    registry       const
/// ----------||----------------------------
/// | (/ 1 y) || (* 5 (/ 1 (* x (/ 1 y)))) |        {x: 1}          2
/// ----------||----------------------------            ^-- mul: +1, div: -1 for this field
/// ```
///
/// When we see a division, we add the first operand to the multiplication side and the second
/// operand to the division side.
///
/// ```text
///  mul                div                    registry       const
/// ----||--------------------------------
/// | 1 || (* 5 (/ 1 (* x (/ 1 y)))) | y |      {x: 1}          2
/// ----||--------------------------------
/// ```
///
/// Folding the last term, we only get the division side remaining.
///
/// ```text
/// m                div                    registry       const
/// -||--------------------------------
/// ||| (* 5 (/ 1 (* x (/ 1 y)))) | y |      {x: 1}          2
/// -||--------------------------------
/// ```
///
/// ## Division side
///
/// This part is a bit trickier because we need to handle nested divisions, which may be equivalent
/// to multiplications on the top level. Maybe it's already clear how to do this; if not, we'll get
/// to it in a bit.
///
/// First, let's unfold the first multiplication on the division side by adding both operands to
/// the division side.
///
/// > To understand why this work, observe that `1 / (2 * 3)` is equivalent to `(1 / 2) / 3`.
///
/// ```text
/// m                div                  registry       const
/// -||------------------------------
/// ||| y | 5 | (/ 1 (* x (/ 1 y))) |      {x: 1}          2
/// -||------------------------------
/// ```
///
/// The next two terms are added to the registry and constant-folded, respectively.
///
/// ```text
/// m           div                  registry       const
/// -||----------------------
/// ||| (/ 1 (* x (/ 1 y))) |      {x: 1, y: -1}     2/5
/// -||----------------------
/// ```
///
/// Now we see a division `A` on the division side. This is the same thing as multiplying the
/// reciprocal of `A` on the top level!
///
/// > Let's break down a simpler example. Observe that `1 / (2 / 3)` is equivalent to `3 / 2`. The
/// > flattening list for `1 / (2 / 3)` after the folding of `1` looks like
/// >
/// > ```text
/// > m     div       const
/// > -||----------
/// > ||| (/ 2 3) |     1
/// > -||----------
/// > ```
/// >
/// > Now we simply add the reciprocal of the division expression to the multiplication side.
/// >
/// > ```text
/// >     mul     d   const
/// > ----------||-
/// > | (/ 3 2) |||     1
/// > ----------||-
/// > ```
/// >
/// > And we already know this gets unfolded as
/// >
/// > ```text
/// >  mul  div   const
/// > ----||----
/// > | 3 || 2 |    1
/// > ----||----
/// > ```
/// >
/// > So we can skip adding the entire division to the multiplication side, instead adding the
/// > operands where appropriate. The rest of the constant folding follows trivially.
///
/// Back to the original example, whose current state is
///
/// ```text
/// m           div                  registry       const
/// -||----------------------
/// ||| (/ 1 (* x (/ 1 y))) |      {x: 1, y: -1}     2/5
/// -||----------------------
/// ```
///
/// Let's apply our "division in division" algorithm: the left operand gets divided, and the right
/// operand gets multiplied.
///
/// ```text
///       mul         div         registry       const
/// ----------------||----
/// | (* x (/ 1 y)) || 1 |      {x: 1, y: -1}     2/5
/// ----------------||----
/// ```
///
/// Now we unfold the new expressions on the multiplication side.
///
/// ```text
///      mul        div         registry       const
/// --------------||----
/// | x | (/ 1 y) || 1 |      {x: 1, y: -1}     2/5
/// --------------||----
/// ```
///
/// Two steps this time:
///
/// ```text
///  mul    div           registry       const
/// ----||--------
/// | 1 || 1 | y |      {x: 2, y: -1}     2/5
/// ----||--------
/// ```
///
/// Three steps this time:
///
/// ```text
/// m  d        registry       const
/// -||-
/// ||||      {x: 2, y: -2}     2/5
/// -||-
/// ```
///
/// And now, all that needs to be done is to construct the flattened expression `2/5 * x^2 / y^-2`.
fn flatten_mul_or_div(o_lhs: RcExpr, o_rhs: RcExpr, is_div: bool) -> RcExpr {
    let o_span = o_lhs.span.to(o_rhs.span);
    let lhs = flatten_expr(o_lhs);
    let rhs = flatten_expr(o_rhs);

    let mut coeff = 1.;
    // Term -> # of times it is multiplied. Negative values are equivalent to division.
    let mut terms = BTreeMap::<RcExpr, f64>::new();

    let mut args = VecDeque::with_capacity(2);
    args.push_back(lhs);
    args.push_back(rhs);

    // If this is not a division, the first two args are both on the mul side.
    let mut args_before_div = if is_div { 1 } else { 2 };

    while let Some(arg) = args.pop_front() {
        let div_side = args_before_div <= 0;
        args_before_div -= 1;

        let arg = unwrap_expr(arg.clone());

        match arg.as_ref() {
            Expr::Const(konst) => {
                if div_side {
                    coeff /= konst;
                } else {
                    coeff *= konst;
                }
            }
            Expr::BinaryExpr(BinaryExpr { op, lhs, rhs })
                if op == &BinaryOperator::Mult || op == &BinaryOperator::Div =>
            {
                if div_side {
                    if op == &BinaryOperator::Mult {
                        // 1 / (2 * 3) -> 1 / 2 / 3; add both operands to the div side.
                        args.push_back(lhs.clone());
                        args.push_back(rhs.clone());
                    } else {
                        // 1 / (2 / 3) -> 3 / 2; here we multiply by the reciprocal, so 3 goes on
                        // the mul side and 2 goes on the div side.
                        args.push_front(rhs.clone());
                        args_before_div = 1;
                        args.push_back(lhs.clone());
                    }
                } else {
                    // mul side
                    if op == &BinaryOperator::Mult {
                        // 1 * (2 * 3) -> 1 * 2 * 3
                        args.push_front(lhs.clone());
                        args.push_front(rhs.clone());
                        args_before_div += 2;
                    } else {
                        // 1 * (2 / 3) -> 1 * 2 / 3; add 2 to the mul side and 3 to the div side.
                        args.push_front(lhs.clone());
                        args_before_div += 1;
                        args.push_back(rhs.clone());
                    }
                }
            }
            _ => {
                // Otherwise the arg is something we cannot further decompose in this context
                // (e.g. a variable or an exponentiation), so add it as a term.
                // TODO: see if we can handle other things more granularly
                let entry = terms.entry(arg.clone()).or_insert(0.);
                if div_side {
                    *entry -= 1.;
                } else {
                    *entry += 1.;
                }
            }
        }
    }

    let mut new_args: Vec<RcExpr> = Vec::with_capacity(1 + terms.len());
    if (coeff - 1.).abs() >= std::f64::EPSILON {
        // coeff != 1
        new_args.push(rc_expr!(Expr::Const(coeff), o_span));
    }
    for (term, coeff) in terms {
        if coeff == 0. {
            // The happiest path :)
            continue;
        } else if (coeff - 1.).abs() < std::f64::EPSILON {
            // coeff == 1
            // 1 * x
            new_args.push(term.clone());
        } else if (coeff - -1.).abs() < std::f64::EPSILON {
            // coeff == -1
            // -1 * x ~ 1/x
            let reciprocal = BinaryExpr::div(rc_expr!(Expr::Const(1.), o_span), term.clone());
            new_args.push(rc_expr!(Expr::BinaryExpr(reciprocal), o_span));
        } else {
            let exponentiation =
                BinaryExpr::exp(term.clone(), rc_expr!(Expr::Const(coeff,), o_span));
            new_args.push(rc_expr!(Expr::BinaryExpr(exponentiation), o_span));
        }
    }

    match new_args.len() {
        0 => rc_expr!(Expr::Const(1.), o_span),
        1 => new_args.remove(0),
        _ => unflatten_binary_expr(&new_args, BinaryOperator::Mult, UnflattenStrategy::Left),
    }
}

/// Unwraps an expression in parentheses/brackets, or returns the original expression if it cannot
/// be unwrapped.
fn unwrap_expr(arg: RcExpr) -> RcExpr {
    match arg.as_ref() {
        Expr::Parend(inner) | Expr::Bracketed(inner) => inner.clone(),
        _ => arg,
    }
}

#[cfg(test)]
mod tests {
    use super::flatten_expr;
    use crate::parse_expr;
    use crate::utils::normalize;
    use crate::Emit;

    static CASES: &[&str] = &[
        "1 + 2 + 3 -> 6",
        "1 + x + x -> (+ 1 (* x 2))",
        // TODO: currently (+ x (* 2 x))
        // "x + x + x -> (* 3 x)",
        "x + y + 1 -> (+ (+ x y) 1)",
        "x + 0 -> x",
        "1 - 1 -> 0",
        "1 + 2 - 3 -> 0",
        "1 - 2 + 3 -> 2",
        "a - a + 1 -> 1",
        "a + 1 - 1 -> a",
        // TODO: (- (- c)) -> c
        "a - (b - c) -> (+ (+ a (- b)) (- (- c)))",
        "10 * 2x / 5 / 2 / 4x -> (* 0.5 (^ x 2))",
        "x * 2 / y / (5 / (x / y)) -> (* (* 0.4 (^ x 2)) (^ y -2))",
        "x * x -> (^ x 2)",
        "x / x -> 1",
        // TODO: currently (* (^ x 2) (^ x -2)). This can be fixed by properly handling exponents
        // when flattening mul/div.
        // "x * x / x * x / x / x -> 1",
        "x / x * x / x * x / x -> 1",
    ];

    #[test]
    fn flatten_cases() {
        for case in CASES {
            let mut split = case.split(" -> ");
            let lhs = split.next().unwrap();
            let expr = parse_expr!(lhs);
            let expected_flattened = split.next().unwrap();

            let flattened = normalize(flatten_expr(expr)).emit_s_expression(Default::default());

            assert_eq!(flattened, expected_flattened);
        }
    }
}